
Advanced Computer Graphics 
Boundary Representations 

for Graphical Models

G. Zachmann 
University of Bremen, Germany 

cgvr.cs.uni-bremen.de 



G. Zachmann Boundary RepresentationsComputer Graphics 2 SS June 2024

The Problem

• How to store objects in versatile and efficient data 
structures? 

• Definition Boundary Representation (B-Rep): 
Objects "consist" of  

1. Triangles, quadrangles, and polygons, i.e., 
geometry; and 

2. Incidence and adjacency relationships, i.e., 
connectivity ("topology") 

• By contrast, there are also representations that try 
to model the volume directly, or that consist only 
of individual points
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Definitions: Graphs

• A graph is a pair G=(V, E), where V = {v0,v1,…,vn-1} is a non-empty set of n 

different nodes (points, vertices) and E is a set of edges (vi, vj) 

• When V is a (discrete) subset of  with d ≥ 2, then G = (V, E) is called a 
geometric graph 

• Two edges/nodes are called neighboring or adjacent, iff they share a 
common node/edge 

• If e = (vi, vj) is an edge in G,  then e and  vi   are called incident (dito for e und 

vj ;  vi and vj are called neighboring or adjacent) 

• In the following, edges will be undirected edges, and consequently we will 
denote them just by  vivj 

• The degree of a node/vertex := number of incident edges
3
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Polygons

• A polygon is a geometric graph P = (V, E), with nodes 

V = {v0,v1,…,vn-1} ⊂ ,  d ≥ 2, and edges E = { (v0,v1), …, (vn-1, v0 ) }, such that 

all nodes lie in the same plane. 

• Nodes are called vertices (sg. vertex) 

• Almost always we also require it to be simple = the intersection of every two 

edges in E is either empty or a vertex in V, and every vertex is incident to 
exactly two edges (i.e., the polygon does not have self-intersections).

4

v0
v1 v2

v4

v5v6

v3



G. Zachmann Boundary RepresentationsComputer Graphics 2 SS June 2024

Mesh (Polygonal Mesh)

• Let M be a set of simple polygons Pi ;  
 let   

• M is called a mesh iff 

• the intersection of two polygons in M is either empty, 
a point v  ∈ V , or an edge  e  ∈ E ; and  

• each edge e  ∈ E  belongs to at least one polygon 
(no dangling edges) 

• The set of all edges, belonging to one polygon only,  
is called the border of the mesh 

• A mesh with no border is called a closed mesh 

• The set of all points V and edges E of a mesh constitute a graph

5
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First Explicit Application of a Mesh for a Music Video :-)

6

Kraftwerk: Musique non stop, 1986. Music video by Rebecca Allen.
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Orientation

• Each polygon of a mesh can be oriented by the vertex 
order in which its vertices are listed 

• Positive front face = ( 0, 1, 5, 4 ) 

• Negative front face = ( 0, 4, 5, 1 ) 

• Two adjacent polygons have the same orientation, if the 
common edge is traversed in opposite directions, when 
the two polygons are traversed according to their 
orientation 

• The orientation determines the surface normal of a 
polygon. By convention, it is obtained using the right-
hand-rule
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• A mesh is called orientable, if all polygons can be oriented such that  every 
two adjacent polygons have the same orientation 

• The mesh is called oriented, if all polygons actually do have the same  orientation 

• A mesh is called non-orientable, if there are 
always two adjacent polygons that have 
opposite orientation, no matter how  
the orientation of all polygons is chosen 

• Theorems (w/o proof): 

• Each non-orientable and closed surface  
that is embedded in three-dimensional space  
must have a self-intersection. 

➢The surface of a polyhedron is always orientable
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Digression: the Möbius Strip in the Arts
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Möbius Strip II, woodcut, 1963

Interlocked Gears, 
Michael Trott, 
2001

Max Bill
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Is the Escher Knot an Orientable Mesh or Not?
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http://homepages.sover.net/~tlongtin 
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Definition: Homeomorphism

• Homeomorphism = bijective, continuous mapping between two "objects" 
(e.g. surfaces), the inverse mapping of which must be continuous, too 

• Two objects are called homeomorph iff there is a homeomorphism between the two 

• Colloquial illustrations:  

• Squishing, stretching, twisting is allowed 

• Making holes is not allowed 

• Cutting is allowed only, if the object is glued together afterwards at exactly the same 
place 

• Note: don't confuse this with homomorphism or homotopy!

11
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• Homeomorphic objects are also called 
topologically equivalent 

• Examples: 
• Disc and square 

• Cup and torus 

• An object and its mirror object  

• Trefoil knot and .... ? 

• The border of the Möbius strip and ... ? 

• All convex polyhedra are homeomorphic 
to a sphere 

• Many non-convex ones are topologically 
equivalent to the sphere, too

Trefoil knot
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Two-Manifolds (Zwei-Mannigfaltigkeiten)

• Definition: a surface is called two-
manifold, iff for each point on the surface 
there is an open ball such that the 
intersection of the ball and the surface is 
topologically equivalent to a two-
dimensional disc 

• Examples: 

• Notice: in computer graphics, often the 
term "manifold" is used when 2-manifold 
is meant! 

• The term "piecewise linear manifold" is 
sometimes used by people, to denote just 
a mesh … 

13
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Digression: Sphere Eversion

14

The rules of the game
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Definition of Polyhedron

• A polyhedron (in CG) is a polygonal mesh in 3D that is 

1. closed,  

2. two-manifold, and 

3. has no self-intersection (sometimes dropped). 

• The polygons are also called facets / faces (Facetten)  

• From the earlier theorem it follows that polyhedra are 
always orientable 

• Jordan Curve Theorem (w/o proof):  
Every topological sphere (e.g. polyhedron) partitions 
space into three subsets: surface, interior, and 
(unbounded) exterior. 

• Warning: definitions differ depending on context!
15
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The Most Naive Data Structure for Meshes

• Array of polygons; each polygon = array of vertices 

• Example: 

• Problems: 

• Vertices occur several times! 

• Waste of memory, problems with animations, … 

• How to find all faces, incident to a given vertex? 

• Different array sizes for polygons with different numbers of 
16

face[0] = 
x0 y0 z0 

x1 y1 z1 

x5 y5 z5 

x4 y4 z4

face[1] = 
x0 y0 z0 

x4 y4 z4 

x7 y7 z7 

x3 y3 z3

v0 v1

v2

v4 v5

v6v7

v3

f0
f1

f2
face[2] = 
x4 y4 z4 

x5 y5 z5 

x6 y6 z6 

x7 y7 z7

. . .
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The Indexed Face Set

• Idea: use common "vertex pool" (shared vertices) 

• Example: 

• Advantage: significant memory savings 

• 1 vertex = 1 point + 1 vector (v.-normal) + uv-texture coord. = 32 bytes 

• 1 index = 1 integer                                                                       = 4 bytes 

• Deformable objects / animations are much easier 

• Probably the most common data structure
17

vertices = 
x0 y0 z0 

x1 y1 z1 

x2 y2 z2 

x3 y3 z3 

. . .

face   vertex index 

0        0, 1, 5, 4 
1        0, 3, 7, 4 
2        4, 5, 6, 7 
. . .

v0 v1

v2

v4 v5

v6v7

v3

f0
f1

f2
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The OBJ File Format

• OBJ = indexed face set + further features 

• Line based ASCII format 

1. Ordered list of vertices: 
• Introduced by "v" on the line 

• Spatial coordinates x, y, z 

• Index is given by the order in the file 

2. Unordered list of polygons: 
• A polygon is introduced by "f" 

• Then, ordered list of vertex indices 

• Length of list = # of edges 

• Orientation is given by order of vertices 

• In principle, "v" and "f" can be mixed arbitrarily
18

v x0 y0 z0 

v x1 y1 z1 

v x2 y2 z2 

v x3 y3 z3 

f  0 1 2 

f 1 3 2

(x0,y0,z0)
(x1,y1,z1)

(x2,y2,z2) (x3,y3,z3)
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More Attributes

• Vertex normals: 
• prefix"vn" 
• contains x, y, z for the normals 
• not necessarily normalized 
• not necessarily in the same order as the vertices 
• indizes similar to vertex indices 

• Texture coordinates: 
• prefix "vt" 
• not necessarily in the same order as the vertices 
• Contains u,v texture coordinates 

• Polygons: 
• use "/" as delimiter for the indices  
• vertex / normal / texture 
• normal and texture are optional 
• use "//" to omit normals, if only tex coords are given

19

v x0 y0 z0 

v x1 y1 z1 

v x2 y2 z2 

vn a0 b0 c0 

vn a1 b1 c1 

vn a2 b2 c2 

vt u0 v0 

vt u1 v1 

vt u2 v2 

f 0/0/0 … 
f …

(x0,y0,z0) 
 (a0,b0,c0) 

 (u0,v0)

(x1,y1,z1) 
(a1,b1,c1) 
(u1,v1)

(x2,y2,z2) 
(a2,b2,c2) 
(u2,v2)

f 0/0/0 1/1/1 2/2/2 f 0/1/0 1/1/1 2/1/2
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• Problems: 

• Edges are (implicitly) stored twice 

• Still no adjacency information (no "topology") 

• Consequence: 

• Finding all facets incident to a given vertex takes time O(     ),  
where n = # vertices of the mesh 

• Dito for finding all vertices adjacent to another given vertex (the 1-ring) 

• A complete mesh traversal takes time O(n2) 

• With a mesh traversal you can, for instance, test whether an object is closed 

• Can be depth-first or breadth-first

20
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Examples Where Adjacency Information is Needed

• Computing vertex normals 

• Editing meshes 

• Simulation, e.g., mass-spring systems
21
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All Possible Connectivity Relationships

	 	 Given 	 Looking for	 Notation 
	 (neighboring) 

1	 	 Vertex 	 Vertices 	 V → V 
2		Vertex 	 Edges	 V → E 
3		Vertex 	 Faces 	 V → F 
4		Edge 	 Vertices	 E → V 
5		Edge 	 Edges	 E → E 
6		Edge  	 Faces 	 E → F 
7		Face 	 Vertices 	 F → V 
8		Face 	 Edges	 F → E 
9   Face  	 Faces 	 F → F 

Abstract notation of a data structure with  
all connectivity relationships: arrows show 
the incidence/adjacency info in the DS

22

V⟶V VFVE

EV EFEE

FV FFFE

V F

E
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• Example: the Indexed Face Set 

• Question:  What is the minimal data structure, that can answer all 
neighboring queries in time O(1)?

23

vertices 
x0 y0 z0 

x1 y1 z1 

x2 y2 z2 

x3 y3 z3 

. . .

face   vertex index 

0        0, 1, 5, 4 
1        0, 3, 7, 4 
2        4, 5, 6, 7 
. . .

= V F

E
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The Winged-Edge Data Structure

• Idea: edge-based data structure (in contrast to face-based) 

• Observations: 

• An edge is defined by exactly two vertices:  e.org , e.dest 

→ yields an orientation of the edge 

• In a closed polyhedron, each edge is incident to exactly 2 facets 

• If it is oriented, then one  
of these facets has the same  
orientation as the edge,  
the other one is opposite

24

e.org

e.dest

face 2

face 1

e

Just FYI
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• Each edge has 4 pointers to 4 adjacent edges: 
1. e.prf = edge incident to e.dest and incident to right face  

            (prf = "previous right face") 
2.e.nrf = edge incident to e.org and incident to right face  

            ("next right face") 
3./4.  e.nlf / e.plf = edge adjacent to e and incident to left face ("next/

previous left face") 

• Observation: if all facets  
are oriented consistently,  
then each edge occurs once 
from org⟶dest and once 
from dest⟶org

25

e.org

e.dest

e.prf

e.plf

e

e.nlf

e.nrf

left face

right face

Optional
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• In addition:  

• Each edge stores one pointer to the left and right facet (e.lf, e.rf) 

• Each facet & each vertex stores one pointer to an arbitrary edge incident to it 

• Abstract representation of the data structure:

26

V F

E

1, sign2

4

21
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Example

27

Optional

v x y z edge

0 0.0 0.0 0.0 0

1 1.0 0.0 0.0 1

2 1.0 1.0 0.0 2

3 0.0 1.0 0.0 3

4 0.0 0.0 1.0 8

5 1.0 0.0 1.0 9

6 1.0 1.0 1.0 10

7 0.0 1.0 1.0 11

Vertex Table

f edge orient
.

0 e0 -

1 e8 -

2 e5 -

3 e6 -

4 e11 -

5 e8 +

Face Table

 e  org  dest ncw ncc
w

 
pcw

pccw  lf   rf

0 v0 v1 e1 e5 e4 e3 f1 f0

1 v1 v2 e2 e6 e5 e0 f2 f0

2 v2 v3 e3 e7 e6 e1 f3 f0

3 v3 v0 e0 e4 e2 e7 f4 f0

4 v0 v4 e8 e11 e0 e3 f4 f1

5 v1 v5 e9 e8 e1 e0 f1 f2

6 v2 v6 e10 e9 e2 e1 f2 f3

7 v3 v7 e11 e10 e3 e2 f3 f4

8 v4 v5 e5 e9 e4 e11 f5 f1

9 v5 v6 e6 e10 e5 e8 f5 f2

10 v6 v7 e7 e11 e9 e6 f5 f3

11 v7 v4 e4 e8 e10 e7 f5 f4

Edge Table

f1

f3

f0

e7

v0 v1

v2

v4 v5

v6v7

v3

e0

e1

e2
e3

e4 e5

e6

e8

e9

e10

e11

f2

f5

f4
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• All neighborhood/connectivity queries can be answered in time O(k) where 
(k = size of the output)  

• 3 kinds of queries can be answered directly in O(1), 
and 6 kinds of queries can be answered by a local traversal of the data structures 
around a facet or a vertex in O(k) 

• Problem: When following edges, one has to test for each edge how it is 
oriented, in order to determine whether to follow n[c]cw or p[c]cw!

28
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Doubly Connected Edge List       [Preparata & Müller, 1978]

• In computer graphics also known as "half-edge data structure" 

• Arguably the easiest and most efficient connectivity data structure 

• Idea: 

• Edges are the first-class citizens,  
each edge is split into two half-edges 

• One half-edge represents only  
one direction and one "side"  
of the complete edge 

• Main data structure =  
table of half-edges

29
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• The pointers stored with each half-edge: 

• Start (org) and end vertex (dest) 

• Incident face (to the left-hand side, when 
walking along the half-edge) 

• Next und previous edge (in traversal order) 

• Twin edge 

• (Originating vertex could be omitted,  
because e.org = e.twin.dest) 

• Abstract notation:

30

e.org

e.prev

e

e.face

e.twin
e.dest

e.next

V F

E
12

2

11
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Example (Here in CW Order!)

31

v0 v1

v2

v4 v5

v6v7

v3

0

12
3

20
23

22

21

e org next prv twin e org next prv twin

0 0 1 3 6 12 2 13 15 10

1 1 2 0 11 13 6 14 12 22

2 2 3 1 15 14 7 15 13 19

3 3 0 2 18 15 3 12 14 2

4 4 5 7 20 16 7 17 19 21

5 5 6 4 8 17 4 18 16 7

6 1 7 5 0 18 0 19 17 3

7 0 4 6 17 19 3 16 18 14

8 1 9 11 5 20 5 21 23 4

9 5 10 8 23 21 4 22 20 16

10 6 11 9 12 22 7 23 21 13

11 2 8 10 1 23 6 20 22 9

v x y z e

0 0.0 0.0 0.0 0

1 1.0 0.0 0.0 1

2 1.0 1.0 0.0 2

3 0.0 1.0 0.0 3

4 0.0 0.0 1.0 4

5 1.0 0.0 1.0 9

6 1.0 1.0 1.0 13

7 0.0 1.0 1.0 16

0 e20

1 e4

2 e0

3 e15

4 e16

5 e8
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17 18

16

10

8
11

9

15

12

13
14

6

5

4

7
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Visualization of the DCEL for a Quad Mesh

32
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Invariants in a DCEL

• Here, we will use the "functional notation", i.e.,   twin(e) = e.twin 

• Invariants (= axioms in an abstract data type "DCEL"): 

• twin( twin(e) ) = e , 
[if the mesh is closed] 

• org( next(e) ) = dest(e) 

• org(e) = dest( twin(e) ) 
[if twin(e) is existing] 

• org( v.edge ) = v                        
[provided v.edge always points to a leaving edge!] 

• etc. …

33

e.org

e.prev

e

e.face

e.twin
e.dest

e.next
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Face and Vertex Cycling

• Given: a closed, 2-manifold mesh 

• Wanted: all vertices incident to a given face f   

• Algorithm: 

• Running time is in O(k) , with k = # vertices of f

34

f

e

e_start = f.edge 

e = e_start 

repeat 

  output e.dest 

  e = e.next 

until e == e_start
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• Task: report all vertices adjacent to a given vertex v 

• Algorithm (wlog., v.edge points to a leaving edge): 

• Running time is in O(k) , where k = # neighbours of v

e_start = v.edge 

e = e_start 

repeat 

  output e.dest 

  e = e.twin.next 

until e == e_start

v

e
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Demo

36
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• Terminology: a feature = a vertex, or an edge, or a facet 

• Theorem:  
A DCEL over a 2-manifold, oriented mesh supports all incidence and 
adjacency queries for a given feature in time O(1) or O(k), where k = # 
neighbors. 

• Crucial property (I learned it the hard way):  
the DCEL must be consistent! 

→ all faces must be properly oriented! 

→ mesh must be orientable

37
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Real-World CAD Output

38
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Limitations / Extensions of the DCEL

• A DCEL can store only meshes that are ... 

1.two-manifold and 

2.oriented, and  

3.the polygons of which do not have 
"holes"! 

• Extensions: lots of them, e.g. those of 
Hervé Brönnimann 

• For non-2-manifold vertices, store several 
pointers to incident edges 

• Dito for facets with holes  

• Yields several cycles of edges for such vertices/faces

40
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A DCEL Data Structure for Non-2-Manifolds

• Directed Edge DS: extension of half-edge DS for 
meshes that are not 2-manifold, ideally only at just a 
few "extraordinary" places 

• Idea:  

• Store pointers to edges (e.next, e.prev, v.edge, f.edge) as 
integer indices into the edge array 

• Interpret negative indices as pointers into "overflow" 
arrays, e.g., 

• a list of all edges emanating from a vertex; or 

• the connected component accessible from a vertex / edge

41
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• Why does the conventional DCEL fail for the following example?

42
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Combinatorial Maps

• Remark: winged-edge and DCEL data structures are (simple) examples of so-
called combinatorial maps 

• Other combinatorial maps are: 

• Quad-edge data structure (and augmented quad-edge) 

• Many extensions of DCEL 

• Cell-chains, n-Gmaps  
(like DCELs that can be extended to n-dimensional space) 

• Many more …

43
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Matrix Representation of Meshes                    [2017]

• Starting point: indexed face set

44

14

8

7

5

4

9

6

3
1

13

12
10

11

2

15

8

5

4

3

2

7

1

6

Face Vertex Index

1 1 2 11 13

2 2 3 6 9 10 11

3 4 5 6 3

4 5 7 6

5 6 7 8 9

6 11 10 12 13

7 1 14 4 3 2

8 9 8 15 12 10

Note: always list vertices in CCW 
order in each row (= face)!

. . . . . .
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• Write the face table as a single, linear array 
(actually, 3 arrays): 

• This matrix representation is called CSR 
(Compressed Sparse Row)

45

Face Vertex Index

1 1 2 11 13

2 2 3 6 9 10 11

3 4 5 6 3

4 5 7 6

5 6 7 8 9

6 11 10 12 13

7 1 14 4 3 2

8 9 8 15 12 10

Vertex ID 1 2 11 13 2 3 6 9 10 11 4 5 6 3 5 7 6

No in face 1 2 3 4 1 2 3 4 5 6 1 2 3 4 1 2 3

Rowptr 1 5 11 15 . . .

Vertex ID 1 2 11 13 2 3 6 9 10 11 4 5 6 3 5 7 6

No in face 1 2 3 4 1 2 3 4 5 6 1 2 3 4 1 2 3

Face ID 1 2 3 4

Only Vertex-ID and Colptr need to 
be stored

. . .
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The Expanded, Sparse Mesh Matrix M

• The indexed face set set can also be 
represented by a mesh matrix M 

• Vertex ID = row index, Face ID = column 
index, no. within face = value M(i,j) 

• Incidentally, the same CSR  
representation is now 
a Compact Sparse Column 
(CSC) representation of  
the mesh matrix!

46

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Face ID

V
e

rt
e

x
 I

D

Vertex ID 1 2 11 13 2 3 6 9 10 11 4 5 6 3 5 7 6
No in face 1 2 3 4 1 2 3 4 5 6 1 2 3 4 1 2 3

Colptr 1 5 11 15 . . .

Face ID 1 2 3 4

1

2

3

4

6

5

4

3

2

1

4

1

2

3

1

3

2
3

4

2

1

Face Vertex Index

1 1 2 11 13
2 2 3 6 9 10 11
3 4 5 6 3
4 5 7 6
5 6 7 8 9
6 11 10 12 13
7 1 14 4 3 2
8 9 8 15 12 10
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Equivalence of Cyclic Permutations in Mesh Matrix

• All cyclic permutations of the 
values ("No in face") within 
one "Face ID"-block in the 
CSC describe the same mesh 
with the same topology! 

• So: all cyclic permutations 
(rotations) of the values 
within one column (i.e., face) 
in the mesh matrix (for the 
non-zero rows) represent 
exactly the same mesh!

47

1 2 3 4 5 6 7 8

1 1

2 2 1

3 2 1

4 2

5 3 1 1

6 3 4 3 2

7 2 3

8 4

9 4

10 5

11 3 6

12

13 4

14

15

1 2 3 4 5 6 7 8

1 4

2 1 6

3 1 4

4 1

5 2 2 4

6 2 3 1 1

7 3 2

8 3

9 3

10 4

11 2 5

12

13 3

14

15

Vertex ID 1 2 11 13 2 3 6 9 10 11 4 5 6 3 5 7 6
No in face 1 2 3 4 1 2 3 4 5 6 1 2 3 4 1 2 3

Face ID 1 2 3 4

Face ID

V
e

rt
e

x
 I

D



G. Zachmann Boundary RepresentationsComputer Graphics 2 SS June 2024

The defining invariant of a mesh matrix M

• Let , where  = 

face indices of face fi 

• Then, for all non-zero entries in M:      

           

48

1 2 3 4 5 6 7 8

1 1

2 2 1

3 2 1

4 2

5 3 1 1

6 3 4 3 2

7 2 3

8 4

9 4

10 5

11 3 6

12

13 4

14

15

Vertex ID 1 2 11 13 2 3 6 9 10 11 4 5 6 3 5 7 6
No in face 1 2 3 4 1 2 3 4 5 6 1 2 3 4 1 2 3

Face ID 1 2 3 4



G. Zachmann Boundary RepresentationsComputer Graphics 2 SS June 2024

The Face-Vertex Incidence Matrix 

• Replace each non-zero entry in M by 1

49

1 2 3 4 5 6 7 8

1 1

2 2 1

3 2 1

4 2

5 3 1 1

6 3 4 3 2

7 2 3

8 4

9 4

10 5

11 3 6

12

13 4

14

15

1 2 3 4 5 6 7 8

1 1

2 1 1

3 1 1

4 1

5 1 1 1

6 1 1 1 1

7 1 1

8 1

9 1

10 1

11 1 1

12

13 1

14

15

Mesh matrix M Face-vertex incidence matrix  
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Examples for Mesh Processing Operations Using Matrices

• Given: triangle mesh 

• Task: calculate the barycenter for each triangle 

• Let v1, v2, …, vn be the vertices of the mesh, vi = (xi, yi, zi) 

• "Vector" representation of the mesh's vertices: 

                                         

• The incidence matrix allows to compute the vector of barycenters per triangle: 

                                          

50
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• Definition: matrix vector multiplication with replacements 

meaning: "perform matrix-vector multiplication, but replace values a, b, c of M 

by d, e, f, respectively, before the actual multiplication" (note: uses M, not M !) 

• Example: calculate vector of barycenters 

                                  

• Note: this can be implemented 
directly in the matrix-vector  
multiplication code

51

for w = 0, 1, 2:             // x,y,z coords 
  for j = 0..m-1:            // m = #faces 
    s = 0  
    for k = 0..n-1:          // with j-th column 
      mkj = m[k][j] 
      if ( mkj == 1 )  mkj = 0.3 
      if ( mkj == 2 )  mkj = 0.3 
      if ( mkj == 3 )  mkj = 0.3 
      s += mkj * p[k][w] 
    b[j][w] = s
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Example: Calculate Vertex Normals (Assuming Triangle Mesh)

• Calculate the edge vectors  for each triangle: 

                               

                               

• Calculate "row-wise vector product" between A and B: 

                              

where Nf = all face normals = "vector" with n rows and 3 columns (x,y,z) 

• Calculate un-normalized vertex normals: 

                             

52
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Example: Mesh Simplification

• For instance, collapse edge (2,3) 

• Topology change: remove vertex 3, connect all edges 
incident to 3 with vertex 2 – except edge (2,3), of course 

• Change face-vertex incidence matrix: 

• Add all incidences from row 3 to row 2, then clear row 3

53

1 2 3 4 5 6 7 8

1 1

2 1 1

3 1 1

4 1

5 1 1 1

6 1 1 1 1

7 1 1

8 1

9 1

10 1

11 1 1

12

13 1

14

15

1 2 3 4 5 6 7 8

1 1

2 1 2 1

3

4 1

5 1 1 1

6 1 1 1 1

7 1 1

8 1

9 1

10 1

11 1 1

12

13 1

14

15

14

8

7

5

4

9
6

3
1

13

12
10

11
2

15
8

5

4

3

2

7

1

6

14

8

7

5

4

9
6

1

13

12
10

11
2

15
8

5

4

3

2

7

1

6
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• Edge collapse (i,j)  (where vertex j is removed) can be achieved by 
 
 
where  

54

j

i

j
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Mesh simplification demo using mesh matrices

55

[Rhaleb Zayer, 2017]
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Operations using Matrix-Matrix Multiplication

• Definition: generalized vertex-vertex 
adjacency 

                     

• Meaning:  Sv(i,j) ≠ 0      vertex i and 
vertex j are incident to the same face 
("share a face") in M (not necessarily 
do they form an edge!) 

• In the case of triangle meshes:  

Sv(i,j) ≠ 0  ⇔  (i,j)  is an edge in M

56

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15

1     2     3     4     5     6     7      8     9    10    11    12    13    14   15

14

8

7

5

4

9
6

3
1

13

12
10

11
2

15
8

5

4

3

2

7

1

6

⇔
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• Definition: generalized face-face adjacency matrix 

• Meaning:   

• Sf(i,j) = # vertices shared by face i and face j in M 

• In particular:  Sf(i,i) = # vertices of face i 

• And for different faces i, j:   Sf(i,j) = 2 ⇔ i and j share an edge 

(provided all faces are convex) 

• Face i is an interior face  ⇔  

number of off-diagonal elements equaling 2 = Sf(i,i); 
otherwise it has an edge on the border of the mesh

57
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Implementation: Matrix-Vector Multiplication using CSC

• Consider the case   y = MT.x    (M.x  works similarly) 

• Remember  
the CSC  
representation 

• For generality,  
rename things  
and allow  
arbitrary values 

• Also, use base 0  
indices!

58

Vertex ID 1 2 11 13 2 3 6 9 10 11 4 5 6 3 5 7 6

No in face 1 2 3 4 1 2 3 4 5 6 1 2 3 4 1 2 3

Colptr 1 5 11 15

Face ID 1 2 3 4

rowind 0 1 10 12 1 2 5 8 9 10 3 4 5 2 4 6 5

values * * * * * * * * * * * * * * * * *

colptr 0 4 10 14

column 0 1 2 3
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Starting Point: Standard Matrix-Vector Multiplication

59

 y = MT.x : 

 

 for j = 0..n-1: 

  s = 0 

  for i = 0..m-1: 

    s += M[i][j] * x[j] 

  y[j] = s

m = # rows (vertices) in M 

n  = # columns (faces) in M 

    = # entries in colptr
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Sparse Matrix-Vector Multiplication (with Arbitrary Values in M)

60

 y = MT.x : (SpMV) 

 

 for j = 0..n-1: 

  s = 0 

  for k = colptr[j]..colptr[j+1]-1: 

    s += values[k] * x[ rowind[k] ] 

  y[j] = s

n  = # columns (faces) in M 

    = # entries in colptr

rowind 0 1 10 12 1 2 5 8 9 10 3 4 5 2 4 6 5

values * * * * * * * * * * * * * * * * *

colptr 0 4 10 14 17

column 0 1 2 3
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Sparse Matrix-Vector Multiplication for Mesh Matrices

61

 y = MT.x : 

 

 for j = 0..n-1: 

  s = 0 

  value = 1 

  for k = colptr[j]..colptr[j+1]-1: 

    s += value * x[ rowind[k] ] 

    value ++  

  y[j] = s

n  = # columns (faces) in M 
    = # entries in colptr

Exploit the fact that  
1. values in M (and, thus, in the values 

array) are incrementing by 1, starting 
with 1 in every column; and, 

2. all rotations of the values within a 
column represent the same face

rowind 0 1 10 12 1 2 5 8 9 10 3 4 5 2 4 6 5

values 1 2 3 4 1 2 3 4 5 6 1 2 3 4 1 2 3

colptr 0 4 10 14 17

column 0 1 2 3
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Sparse Matrix-Vector Multiplication for Triangle Meshes

62

In addition, exploit the fact 
that all faces have 3 vertices 
⟶ can omit colptr, too.

 y = MT.x : 

 

 for j = 0..n-1: 

  s = 0 

  value = 1 

  for k = 3*j,..,3*(j+1)-1: 

    s += value * x[ rowind[k] ] 

    value ++  

  y[j] = s

(And good compilers can unroll 
the inner loop automatically!)

Note: this is just a placeholder, 
not a real mesh!

rowind 0 1 10 12 1 2 5 8 9 10 3 4 5 2 4 6 5

column 0 1 2 3 4 5

n  = # columns (faces) in M 
    = # entries in colptr



G. Zachmann Boundary RepresentationsComputer Graphics 2 SS June 2024

Implementation Details

• Mult. with replacements: can be integrated into the SpMV routine directly 

• We could use libraries for general sparse matrix-vector multiplication 

• Experience shows: specialized versions for the case of mesh matrices pays 
off, especially in case of multiplication with replacements 

• Parallelization for the GPU: 

• In case of y=MTx: every thread i computes one y[i] (outer loop), thread i reads 
one column of M, no inter-thread communication and synchronization needed 

• Unfortunately, no coalesced memory access 

• In case of y=Mx: again one thread per column of M, but threads accumulate their 
results into y, thus atomic add is necessary 

• For more, see the course "Massively Parallel Algorithms"

63
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Performance

• Computing vertex normals:

64
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The Euler Equation for Graphs / Polyhedra

• Theorem (Euler's Equation): 
Let V, E, F  = number of vertices, edges, faces in a polyhedron that is 
homeomorph to a sphere. Then,  

                                                  

• Examples:

65

V = 8+1 
E = 12+1+1 
F = 6 +1

V = 8 
E = 12+1 
F = 6 +1

V = 8 
E = 12 
F = 6

Voted 
2nd most 
beautiful 
theorem!
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Proof (given by Cauchy)

• Given: a closed mesh (polyhedron, equivalent to sphere) 

• First idea: 

• Remove one facet ⟶ yields an open mesh; the border is exactly the edge cycle of 
the removed facet) 

• Stretch the mesh by pulling its border apart until it becomes a planar graph 
(works only if the polyhedron is homeomorph to a sphere) 

• It remains to show:  

• Second idea: triangulate the graph (i.e., the mesh) 

• Draw diagonals in all facets with more than 3 vertices 

• For each new diagonal, we have 

                    
66
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• The graph has a border; triangles have 0, 1, or 2 "border edges" 

• Repeat one of the following two transformations: 

• If there is a triangle with exactly one border edge, remove this triangle 

It follows that  

• If there is a triangle with exactly two border edges,remove the triangle 

It follows that  

• Repeat, until only one triangle remains 

• For that triangle, the Euler equation is obviously correct 

• Because the value of V-E+F is invariant through all above 
transformations, the equation is also true for the original graph, hence 
for the original mesh

67
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Application of Euler's Equation to Meshes

• Euler's Equation ⟶ relationship between #triangles and  
#vertices in a closed triangle mesh 

• In a closed triangle mesh, each edge is incident to exactly 
2 triangles , so 

                                         

• Plug this into Euler's equation: 

                     

• Therefore, for large triangle meshes  

68
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Average Vertex Degree

• Theorem: 
   In all closed, two-manifold, triangle meshes,  
   the average vertex degree ≈ 6 (even with higher genus). 

• Proof: 

• We know: 3F = 2E 

• Plugging this into Euler:   

• Solve for E:   

• Calculate average degree by edge-splitting trick:

V − E +
2

3
E = 2

<latexit sha1_base64="JbH662Y4hvfNh9mJnOnwpdLvOeA="></latexit>

E = 3(V − 2)
<latexit sha1_base64="vCciJQX7y6lxSzFYA9VQMWYz/I4="></latexit>
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<latexit sha1_base64="EoeGWZwc4NeAhhbByOzL3TBTQBE="></latexit>

average degree =
# split edges

V
=

2E

V
=

6V − 12

V
≈ 6
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Complexity of Polyhedra

• Similarly, we can derive (for closed triangle meshes) 

                                  

• Theorem (on the complexity of polyhedra): 

      For all closed triangle meshes,   

• Analogously, we can prove this for quad meshes 

• We can even prove it for all closed meshes! 

• Usually, it is also true for open meshes, where the border is not "too long" 
relative to the total number of edges (i.e., not too many faces are border 
faces)

70
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Fun Application of Euler's Equation

71

h-nodes 
("houses")

g-nodes
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The Platonic Solids

• Definition Platonic Solid:  
A convex polyhedron consisting of a number of  congruent & regular 

polygons, with the same number of faces meeting at each vertex. 

• Regular polygon = all sides are equal, all angles are equal 

• Theorem (Euklid): 

          There are exactly five platonic solids.

72

Voted 
4th most 
beautiful 
theorem!
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Proof

• All facets have the same number of edges = n;  therefore: 

• All vertices have the same number of incident edges = m; therefore 

• Plugging this into Euler's equation: 

• Yields the following condition on m and n:

73



G. Zachmann Boundary RepresentationsComputer Graphics 2 SS June 2024

• Additional condition: m and n both must be ≥ 3 

• Which {m,n} fulfill these conditions: 
            	          {3,3}       {3,4}      {4,3}      {5,3}      {3,5}

74

Schläfli symbols

C. Burke, 2008
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Digression: Platonic Solids in History & the Arts

• A specimen of an icosahedron from Egypt,  
2nd century B.C. – 4th century A.D. 

• The platonic solids have been known at least 1000 years before Plato in Scotland

75
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The Curious Case of the Roman Dodecahedrons

76

Nobody has a convincing answer as to what their purpose was!
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Platonic Solids in the Arts and Architecture

77

Portrait of Johannes 
Neudörfer and his Son 

Nicolas Neufchatel, 
1527—1590

Dürer: Melencolia IOceano, CA, USA
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Regular Polyhedra in 4-Dimensional Space

78

"Dimensions" by Jos Leys, Étienne Ghys, Aurélien Alvarez 
http://www.dimensions-math.org/Dim_E.htm 

The regular 
polyhedra (sort of 
the generalization 
of Platonic solids in 
higher dimensions) 
were discovered by 
Schläfli.

http://www.dimensions-math.org/Dim_E.htm
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The Euler Characteristic

• Caution: the Euler equation holds only for polyhedra, that are topologically 
equivalent to a sphere! 

• Examples: 

• But: the quantity V-E+F stays the same no matter how any given polyhedron is 
deformed (homeomorphically!)  

→ so the quantity  V-E+F  is a topologic invariant
79

Tetrahemihexahedron Octahemioctahedron Cubohemioctahedron
V-E+F6 - 12 + 7 = 1 12 - 24 + 12 = 0 12 - 24 + 10 = -2
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• Definition Euler characteristic: 

                                           

• Examples:

80

2 0 -2

0 0-4
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• The Euler characteristic is even independent of the tessellation!

81

V = 16 
E = 32 
F = 16 
𝝌 = 0

V = 16 
E = 36 
F = 20 
𝝌 = 0

V = 28 
E = 56 
F = 26 
𝝌 = -2

V = 24 
E = 48 
F = 22 
𝝌 = -2
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The Classification Theorem

Assume we are given a closed and orientable mesh consisting of just one shell. 
Then the following holds: 

The Euler characteristic 𝝌 = 2, 0, -2, …   ⇔  

the mesh is topologically equivalent to a sphere, a torus, a double torus, etc.

82
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The Euler-Poincaré Equation

• Generalization of the Euler equation for 2-manifold, closed objects (possibly 
with several, non-contiguous "surfaces"): 

• G = # handles,  S = # shells/surfaces (Schalen) 

• G is called "Genus" 

• Handle (hole, Loch): a piece of rubber string inside 
a handle cannot be shrunk towards a single point 

• Shell (Schale) = 2-manifold, contiguous surface without self-intersection; by 
walking on the surface of a shell, each and every point on it can be reached, 
without ever leaving it 

• We can cut out so-called "voids" (Aushöhlungen) by "inner" shells 

• In CG, we usually consider only meshes consisting of a single shell!
83
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Examples

• V = 16,  E = 28,  F = 14,  S = 1,  G = 0: 

V - E + F = 2 = 2(S - G) 

• V = 16,  E = 32,  F = 16,  S = 1,  G = 1: 

V - E + F = 0 = 2(S - G) 

• V = 16+8,  E = 32+12,  F = 16+6, G = 1,  S = 2: 

V - E + F = 2 = 2(S - G)

84
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• Beware: sometimes it is not obvious  
to determine the genus! 

• Approach: find homeomorphism,  
so that genus becomes obvious 

• Example: 

• Genus = 2

85

1. 2. 3.
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• What is the genus of this object?

86
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Regular Quad Meshes

• Definition "regular quad mesh": 
Each face of the mesh is a quadrangle  
(a.k.a. quad, quadrilateral),  
and each vertex has degree 4. 

• Theorem: 
  Each closed, orientable, regular  
  quad mesh must be topologically  
  equivalent to a torus 

• Proof: 

• In such a mesh we have:  4V = 2E  ⟶  V = ½ E 

• By counting the edges via the faces:  4F = 2E  ⟶  F = ½ E 

• Therefore  𝝌 (M) = V - E + F = 0   ⟶  mesh = torus (by previous theorem)

87
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Regular Meshes

• Definition: 
A regular (n,m,g)-mesh is a closed, orientable mesh, with genus g, where 
each facet has exactly n edges, and each vertex has exactly degree m. 

• Examples: 

• The (n,m,0)-meshes are exactly the Platonic solids 

• The regular quad mesh is a regular (4,4,1)-mesh

88
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• In a regular mesh we have 

• Plugging that into the Euler equation, we obtain 

• For regular genus-1 meshes we have: 

• The only possible integer  
solutions are:   (4, 4, 1)    (3, 6, 1)    (6, 3, 1)

89
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nm − 2n − 2m = 0
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• Theorem: 
  There are infinitely many regular (n,m,g)-meshes for all pairs (n,m)  
  with nm – 2n – 2m > 0   (genus G > 1). 

• Proof: 

• Rewrite equations (1) and (2) from previous slide:  

• Let g1 = nm – 2n – 2m ; 
then E1 = 2nm, V1 = 4n, F1 = 4m are solutions of the 3 equations 

• Let gk = k(g1 – 1) + 1  , k = 1, 2, … ; 
then Ek = kE1 , Vk = kV1 , Fk = kF1 are solutions, too
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• Remark: the proof does not tell us how to construct such meshes 

• Example of a (4,5,2)-mesh 

• We can add an arbitrary number of such "chain rings" to achieve an arbitrarily 
high genus and, thus, a (4,5,g)-mesh with g>=2
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